Application of metabolomics on selecting for litter size in American mink

S. Spencer¹, A. Kenez², Y. Montanholi¹ & Y. Miar¹

¹ Dalhousie University, Department of Animal Science and Aquaculture, Truro, Canada ² Institute of Animal Science, University of Hohenheim, Stuttgart, Germany

Outline

Application of metabolomics on selecting for litter size in American mink

Mink Genomics Research Program
Background
Mink metabolomics
Results

Mink Genomics Research Program

Background

- Over 99% of ranch-raised pelts sold in Canada are American mink pelts
- Nova Scotia produces 61.4% of pelts in Canada
- Increasing litter size will produce a higher financial gain than improving any other trait in mink
- This study is one of the first metabolomic studies on mink

Objectives

•To determine metabolites and their association with litter size in mink

•To assess the potential of metabolomics in selecting for economically important traits in mink

Mink Breeding

- Induced ovulators seasonal breeder
- Gestation ranges from 40-75 days
- Litter size ranges from 0-17 kits
- Litter size heritability of 0.07±0.03

Factors Affecting Litter Size

- Length of gestation
- Nutrition
- Ovulation rate

Metabolomics

- The study of metabolites present within an organism, cell or tissue
- Metabolites are substances formed in or necessary for metabolism
- Ability to study the phenotype while taking environmental stresses into account

Previous Research

- Predict desired phenotypes
 - Body mass
 - Growth rates
 - Meat quality
 - Feed intake
- Discover biomarkers for diagnosing diseases
 - Diabetes

Animals

- 21 dams from the Canadian Centre for Fur Animal Research (CCFAR) – Dalhousie AC
 Age ranges from 2-4 years
- Selected based on the reproductive performance (2016)
 - 11 selected for high litter size (Avg. 9)
 - 10 selected for low litter size (Avg. 0)

DALHOUSIE 1818 UNIVERSITY 2018 Mink Gel

Metabolite Assay Using NMR

- Samples prepared at NRC
 - Dilute samples with D20 to 10-20%
 - Transfer into 1.7mm NMR tubes

Data Analysis

• NMR spectra imported into NMRProcFlow 1.2

- Alignment
- Removal of water signal
- Intelligent binning

- Binned NMR spectral data then analyzed in MetaboAnalyst 3.0¹
- Principle Component Analysis (PCA) was used to visualize the impact of reproductive performance on plasma metabolic fingerprints

1. Xia, J. and Wishart, D.S. (2016) Current Protocols in Bioinformatics, 55:14.10.1-14

- No obvious separation between groups
- Remarkable variation between individuals
- Individual patterns present
 - Mink 10, 13, 19
 - Mink 17, 20

PCA Score Plot

- PC1 and PC2 accounted to 49.4% of the total variation
- Little variation seen within low litter size group
- Plenty of variation within high litter size group

T-test

• Significance level: P<0.05

DALHOUSIE

UNIVERSITY

E CO E

- Majority of spectral bins not significantly different
- Significant difference seen between 5 bins

1818

2018

• Greater concentration of metabolite in high litter size group in all 5 spectral bins

Spectra Bins

- Lack of difference may be due to small sample size
- Next step is to determine the association between the metabolites and litter size
- Cao et al. (2015) found progestin level to be higher in mink dams with reproductive success
- Results from this study show the good potential for future metabolomic studies in mink
 - Feed conversion
 - Aleutian disease

Acknowledgments

Prof. Hossain Farid

FACULTY OF AGRICULTURE

NOVA SCOTIA MINK BREEDERS

Canadian Centre for Fur Animal Research Mink Veterinary Consulting & Research Service Ltd

Younes Miar, Ph.D. Assistant Professor & Industry Research Chair in Mink Genomics

miar@dal.ca

902-893-6165

Graduate Student Positions – Mink Genomics

